Smoothed Particle Hydrodynamics Simulations of Porous Medium Flow Using Ergun’s Fixed-Bed Equation

Author:

Alvarado-Rodríguez Carlos E.12ORCID,Díaz-Damacillo Lamberto23ORCID,Plaza Eric4ORCID,Sigalotti Leonardo Di G.3ORCID

Affiliation:

1. Departamento de Ingeniería Quimica, DCNE, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 03605, Mexico

2. Consejo Nacional de Ciencia y Tecnología, Avenida Insurgentes Sur 1582, Crédito Constructor, Ciudad de México 03940, Mexico

3. Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotzalco, Ciudad de México 02128, Mexico

4. Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Ingeniería de Materiales y Nanotecnología, Altos de Pipe, Estado Miranda 03940, Venezuela

Abstract

A popular equation that is often employed to represent the relationship between the pressure loss and the fluid flow in fluidized or packed granular beds is the Ergun equation, which is an extension of Darcy’s law. In this paper, the method of Smoothed Particle Hydrodynamics (SPH) is used to numerically study the flow field across a rectangular channel partially filled with a porous layer both at the Representative Elementary Volume (REV) scale using the Ergun equation and at the pore scale. Since the flow field can be estimated at the REV scale with a much lower cost compared to the pore scale, it is important to evaluate how accurately the pore-scale results can be reproduced at the REV scale. The comparison between both scales is made in terms of the velocity profiles at the outlet of the rectangular channel and the pressure losses across the clear and porous zones for three different arrays of solid grains at the pore scale. The results show that minimum differences in the flow structure and velocity profiles between the REV and the pore scale always occur at intermediate values of the porosity (ϕ=0.44 and 0.55). As the porosity increases, the differences between the REV and the pore scale also increase. The details of the pressure losses are affected by the geometry of the porous medium. In particular, we find that the pressure profiles at the REV scale match those at the pore scale almost independently of the porosity only when the grains are uniformly distributed in a non-staggered square array.

Funder

European Union’s Horizon 2020 Programme under the ENERXICO Project

Mexican CONACYT-SENER-Hidrocarburos Programme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

1. Hemond, H.F., and Fechner, E.J. (2015). Chemical Fate and Transport in the Environment, Elsevier/Academic Press.

2. Katopodes, N.D. (2019). Free-Surface Flow. Environmental Fluid Mechanics, Elsevier.

3. Xue, L., Guo, X., and Chen, H. (2020). Fluid Flow in Porous Media. Fundamentals and Applications, World Scientific Publishing.

4. Tailoring porous media for controllable capillary flow;Liu;J. Colloid Interface Sci.,2019

5. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles;Brinkman;Appl. Sci. Res.,1949

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3