Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes

Author:

Nie Wenjie12,Che Qianqian1,Chen Danni1,Cao Hongyu1,Deng Yuehua12

Affiliation:

1. College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China

2. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China

Abstract

Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L−1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.

Funder

Shaanxi Natural Science Foundation Research Program

Scientific Research Foundation for Doctors, Xi’an University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3