Activation of Host-NLRP3 Inflammasome in Myeloid Cells Dictates Response to Anti-PD-1 Therapy in Metastatic Breast Cancers

Author:

Tengesdal Isak W.,Li Suzhao,Powers Nicholas E.,May Makenna,Neff Charles P.,Joosten Leo A. B.ORCID,Marchetti Carlo,Dinarello Charles A.

Abstract

Tumor-associated inflammation leads to dysregulated cytokine production that promotes tumor immune evasion and anti-tumor immunity dysfunction. In advanced stage breast cancer, the proinflammatory cytokine IL-1β is overexpressed due to large proportions of activated myeloid cells in the tumor microenvironment (TME). Here, we demonstrate the role of the host nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing 3 (NLRP3) inflammasome in metastatic breast cancer. In vitro, we show that stimulation of THP-1 cells with conditioned media collected from MDA-MB-468 cells induced NLRP3 activation and increased Pdcd1l1 expression. In vivo, mice deficient in NLRP3 orthotopically implanted with metastatic breast cancer cell line (E0771) showed significant reduction in tumor growth (p < 0.05) and increased survival (p < 0.01). Inhibition of NLRP3 with the small molecule OLT1177® reduced expression of Pdcd1l1 (p < 0.001), Casp1 (p < 0.01) and Il1b (p < 0.01) in primary tumors. Furthermore, tumor-bearing mice receiving OLT1177® showed reduced infiltration of myeloid-derived suppressor cells (MDSCs) (p < 0.001) and increased CD8+ T cells (p < 0.05) and NK cells (p < 0.05) in the TME. NLRP3 inhibition in addition to anti-PD-1 treatment significantly reduced tumor growth from the monotherapies (p < 0.05). These data define NLRP3 activation as a key driver of immune suppression in metastatic breast cancers. Furthermore, this study suggests NLRP3 as a valid target to increase efficacy of immunotherapy with checkpoint inhibitor in metastatic breast cancers.

Funder

National Institute of Health

Interleukin Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3