Sleeve Gastrectomy Provides Cardioprotection from Oxidative Stress In Vitro Due to Reduction of Circulating Myeloperoxidase

Author:

Barron Matthew1,Hayes Hailey1,Bice Zachary2,Pritchard Kirkwood2,Kindel Tammy Lyn1ORCID

Affiliation:

1. Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA

2. Division of Pediatric Surgery, Children’s Research Institute, Milwaukee, WI 53226, USA

Abstract

Bariatric surgery, including sleeve gastrectomy (SG), improves systolic and diastolic function, which is independent of weight loss in rodent models. The cause of weight loss-independent improvements in cardiac function are unknown but may originate from the gastrointestinal tract. In this study, we investigated whether a circulating blood factor is a mechanism for acute cardioprotection after SG by testing the utility of rodent SG plasma to reduce metabolic stress in vitro. For the initial experiment, obese male Zucker rats underwent SG, ad lib sham, or pair-fed sham surgeries (n = six SG, n = eight SH, n = eight PF). For all other studies, a second group of Zucker rats underwent SG or ad lib sham surgeries (n = eight SH, n = six SG). Six weeks following surgery, plasma was collected from each group, both in the fasting and post-prandial (pp) state. This plasma was then pooled per surgical group and nutrient state and tested in multiple in vitro cell culture and extra-cellular assays to determine the effect of SG on myotubular metabolic stress compared to the sham surgeries. Post-prandial SG plasma (ppSG), but not fasting SG, pp, or fasting sham plasma, reduced the metabolic stress of the H9c2 cells as measured by lactate dehydrogenase (LDH) release (p < 0.01). Unlike SG, weight reduction through pair-feeding did not prevent H9c2 metabolic stress. The PpSG plasma had the slowest rate of extracellular hydrogen peroxide consumption and peroxidatic activity compared to the pp sham, fasting SG, and fasting sham groups. Redox testing of plasma with aminiobenzoic acid hydrazide and edaravone suggested a pattern supporting myeloperoxidase (MPO), or other peroxidases, as the primary component responsible for reduced metabolic stress with ppSG plasma. The PpSG plasma contained 35% less circulating MPO protein as compared to the pp sham and fasting SG plasma. The plasma from an MPO global knockout rat also prevented metabolic stress of the H9c2 cells, compared to the significant increase in LDH release from the plasma of the WT controls (p < 0.01). The MPO global knockout plasma also had a rate of extracellular hydrogen peroxide consumption and peroxidatic activity comparable to the ppSG plasma. These studies suggest that one of the weight loss-independent mechanisms by which SG improves myocellular function could be a reduced pro-oxidative environment due to lower circulating levels of MPO. It appears that the gastrointestinal tract is of critical importance to these findings, as the MPO levels were only lowered after enteral, nutrient stimulation in the SG rats. If this surgical effect is confirmed in humans, SG may be a unique surgical treatment for multiple diseases with a pathogenesis of inflammation and oxidative damage, including obesity-associated heart failure with preserved ejection fraction.

Funder

Cardiovascular Center at the Medical College of Wisconsin

NIH

American College of Surgeons George Clowes Career Development Award

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3