Soil Moisture Change Detection with Sentinel-1 SAR Image for Slow Onsetting Disasters: An Investigative Study Using Index Based Method

Author:

Bormudoi Arnob12,Nagai Masahiko1ORCID,Katiyar Vaibhav1ORCID,Ichikawa Dorj1ORCID,Eguchi Tsuyoshi1

Affiliation:

1. Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1, Ube 755-8611, Japan

2. Faculty of Engineering, Assam Down Town University, Panikhaiti, Guwahati 781026, India

Abstract

Understanding physical processes in nature, including the occurrence of slow-onset natural disasters such as droughts and landslides, requires knowledge of the change in soil moisture between two points in time. The study was conducted on a relatively bare soil, and the change in soil moisture was examined with an index called Normalized radar Backscatter soil Moisture Index (NBMI) using Sentinel-1 satellite data. Along with soil moisture measured with a probe on the ground, a study of correlation with satellite imagery was conducted using a Multiple Linear Regression (MLR) model. Furthermore, the Dubois model was used to predict soil moisture. Results have shown that NBMI on a logarithmic scale provides a good representation of soil moisture change with R2~86%. The MLR model showed a positive correlation of soil moisture with the co-polarized backscatter coefficient, but an opposite correlation with the surface roughness and angle of incidence. The results of the Dubois model showed poor correlation of 44.37% and higher RMSE error of 17.1, demonstrating the need for detailed and accurate measurement of surface roughness as a prerequisite for simulating the model. Of the three approaches, index-based measurement has been shown to be the most rapid for understanding soil moisture change and has the potential to be used for understanding some mechanisms of natural disasters under similar soil conditions.

Funder

The Cross-ministerial Strategic Innovation Promotion Program (SIP), Enhancement of Societal Resiliency against Natural Disasters

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3