Synergetic Integration of SWAT and Multi-Objective Optimization Algorithms for Evaluating Efficiencies of Agricultural Best Management Practices to Improve Water Quality

Author:

Hashemi Aslani Zohreh1ORCID,Nasiri Vahid2ORCID,Maftei Carmen2ORCID,Vaseashta Ashok23ORCID

Affiliation:

1. Faculty of Environment, University of Tehran, Tehran 1417466191, Iran

2. Faculty of Civil Engineering, Transilvania University of Brasov, 900152 Brasov, Romania

3. Applied Research Division, International Clean Water Institute, Manassas, VA 20110, USA

Abstract

Nitrate is one of the most complicated forms of nitrogen found in aquatic surface systems, which results in the eutrophication of the water. During the last few decades, due to agriculture and animal husbandry activities, as well as urban development, a significant amount of pollutants have accumulated in the Jajrood river in northern Iran. In this research, we simulated nitrate load in a rural watershed to assess the outlet stream’s qualitative status and evaluate the influence of best management practices (BMPs). To accomplish this, we prepared, processed, and integrated different datasets, including land-use land-cover (LULC) maps, physiographic layers, and hydrological and agricultural datasets. In the modeling section, the Soil and Water Assessment Tool (SWAT) was used to simulate nitrate load over 28 years (1991–2019). Additionally, the multi-objective optimization algorithm (MOPSO) was implemented to reduce the intended objective functions, including the number of best management practices and the nitrate concentration considering different scenarios. The calibration of the basin’s discharge and nitrate indicated that the SWAT model performed well in simulating the catchment’s streamflow (R2 = 0.71) and nitrate (R2 = 0.69). The recommended BMPs for reducing nutrient discharge from the basin are using vegetated filter strips on river banks and fertilizer reduction in agricultural activities. According to the results from this investigation, the integrated model demonstrates a strong ability to optimally determine the type, size, and location of BMPs in the watershed as long as the reduction criteria change. In a situation of water scarcity, the studies reported here could provide useful information for policymakers and planners to define water conservation policies and strategies.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3