Characterization and Machine Learning-Driven Property Prediction of a Novel Hybrid Hydrogel Bioink Considering Extrusion-Based 3D Bioprinting

Author:

Sarah Rokeya1,Schimmelpfennig Kory2ORCID,Rohauer Riley3,Lewis Christopher L.2,Limon Shah M.4ORCID,Habib Ahasan2

Affiliation:

1. Sustainable Product Design and Architecture, Keene State College, Keene, NH 03431, USA

2. Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA

3. Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

4. Industrial & Systems Engineering, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057, USA

Abstract

The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning. While a few component-based efforts have been reported to predict the viscosity of bioinks, the impact of shear rate has been vastly ignored. To address this gap, our research presents predictive models using machine learning (ML) algorithms, including polynomial fit (PF), decision tree (DT), and random forest (RF), to estimate bioink viscosity based on component weights and shear rate. We utilized novel bioinks composed of varying percentages of alginate (2–5.25%), gelatin (2–5.25%), and TEMPO-Nano fibrillated cellulose (0.5–1%) at shear rates from 0.1 to 100 s−1. Our study analyzed 169 rheological measurements using 80% training and 20% validation data. The results, based on the coefficient of determination (R2) and mean absolute error (MAE), showed that the RF algorithm-based model performed best: [(R2, MAE) RF = (0.99, 0.09), (R2, MAE) PF = (0.95, 0.28), (R2, MAE) DT = (0.98, 0.13)]. These predictive models serve as valuable tools for bioink formulation optimization, allowing researchers to determine effective viscosities without extensive experimental trials to accelerate tissue engineering.

Funder

National Science Foundation Award

National Institute of General Medical, and Sciences of the NIH Award

College of Engineering Technology-Rochester Institute of Technology

College of Engineering and Science, Slippery Rock University of Pennsylvania

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3