Research on the Prediction of Optimal Frequency for Vibration Mixing and Comparison on Initial Performance of Cold-Recycled Asphalt Emulsion Mixture

Author:

Chen Tian1

Affiliation:

1. Department of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China

Abstract

The multicomponent cold-recycled asphalt emulsion mixture (CRAEM) has the ability of antireflection cracking between the base and the bottom surface layer, but it has secondary compaction and residual void, which is not conducive to crack resistance and fatigue performance. The application of high-frequency vibration mixing technology can reduce voids and improve crack resistance, but it is limited by the complexity of testing to determine the optimal mixing frequency. The fractal dimension of gradation is deduced by fractal theory, and the prediction model for optimal frequency is proposed. Dry, wet, freeze–thaw splitting tests, and rutting tests were employed to test the early mechanical properties of high-frequency vibration mixing specimens corresponding to different vibration accelerations, and mercury inclusion tests were utilized to compare the void distribution corresponding to the optimal mixing frequency and forced mixing, and to verify the prediction model for optimal frequency. The results indicate that the high-frequency vibration mixing technology is able to benefit the initial cracking resistance (28.1% increase), moisture stability (11.2% increase), and high-temperature stability on the macro level on the optimal frequency. Meanwhile, the void distribution structure can be optimized, reducing the proportion of harmful voids and increasing the proportion of transitional pores on the micro level. However, the freeze–thaw resistance needs to be further studied. This study reduces the number and cost of experiments to determine the optimal frequency, and provides theoretical guidance and technical support for the engineering application of the CRAEM.

Funder

Ningbo University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3