Nutrient Element Stocks and Dynamic Changes in Stump–Root Systems of Eucalyptus urophylla × E. grandis

Author:

Xie Zhushan1,Liang Xiang1,Liu Haiyu1,Deng Xiangsheng1,Cheng Fei12ORCID

Affiliation:

1. Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China

Abstract

Stump–root systems consist of aboveground stumps and underground coarse roots after timber harvesting. Stump–root systems are the primary source of coarse woody debris (CWD) in plantations, and they play a crucial role in the material cycle, energy flow, and biodiversity of Eucalyptus plantation ecosystems. However, there is limited knowledge about the changes in elemental stock within this CWD type during decomposition. To address this gap, we conducted a study on Eucalyptus urophylla × E. grandis stump–root systems at various times (0, 1, 2, 3, 4, 5, and 6 years) after clearcutting. Our aim was to investigate the stock changes in eight elements (K, Ca, Mg, S, Fe, Mn, Cu, and Zn) within the stumps and coarse roots over time and their decay levels, and we analyzed the relationship between elemental stocks and the physical, chemical, and structural components of stump–root systems. Our findings revealed the following: (1) The majority of each element’s stock within the stump–root system was found in the coarse roots. The elemental stocks in both stumps and coarse roots decreased as time passed after clearcutting and as decay progressed. (2) Notably, the elemental stocks in stumps and coarse roots were significantly higher than in other treatments during the initial 0–2 years after clearcutting and at decay classes I and II. In terms of elemental stocks, stumps from all clearcutting times or decay classes had the highest K stock, followed by Ca and Fe. Mg, Mn, and S stocks were lower than the first three, while Zn and Cu stocks were very low. The ordering of elemental stocks from high to low in the stump–root systems generally aligned with that of the coarse roots. (3) The residual rates of K, Mg, and Mn stocks in the stump–root systems fit the negative exponential model well. It took approximately 1 to 3.5 years for a 50% loss of the initial stocks of these elements and 5 to 10 years for a 95% loss. (4) The large amount of biomass in the stump–root system is the long-term nutrient reservoir of plantations, and any factor related to biomass loss affects the magnitude and duration of the nutrient reservoir, such as N, P, stoichiometric ratios, density, water-holding capacity, and hemicellulose. These findings contribute to a better understanding of the nutrient elemental dynamics and ecological functions of stump–root systems in Eucalyptus plantations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3