Intrusion Event Classification of a Drainage Tunnel Based on Principal Component Analysis and Neural Networking

Author:

Yuan Peng1,Zhang Weihao1,Shang Xueyi2ORCID,Pu Yuanyuan2

Affiliation:

1. China Yangtze Power Co., Ltd., Yibin 644612, China

2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

Abstract

Drainage tunnel stability is crucial for engineering project safety (e.g., mine engineering and dams), and rockfall events and water release are key indicators of drainage tunnel stability. To address this, we developed a monitoring system to simulate drainage tunnel intrusions based on distributed acoustic sensing (DAS), and we obtained typical characteristics of events like rockfall events and water release. Given the multitude of DAS signal feature parameters and challenges, such as high-dimensional features impacting the classification accuracy of machine learning, we proposed an identification method for drainage tunnel intrusion events using principal component analysis (PCA) and neural networks. PCA reveals that amplitude-related parameters—amplitude, mean amplitude, and energy—significantly contribute to DAS signal classification, reducing the feature parameter dimensions by 54.8%. The accuracy of intrusion event classification improves with PCA-processed data compared to unprocessed data, with overall accuracy rates of 79.1% for rockfall events and 72.7% for water release events. Additionally, the artificial neural network model outperforms the Bayesian and logistic regression models, demonstrating that ANN has advantages in handling complex models for intrusion event classification.

Funder

China Yangtze Power Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3