Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the Prognosis of Prostate Cancer

Author:

Alwadi Diaaidden,Felty Quentin,Roy DeoduttaORCID,Yoo Changwon,Deoraj AlokORCID

Abstract

Prostate cancer (PCa) is one of the leading malignant tumors in US men. The lack of understanding of the molecular pathology on the risk of food supply chain exposures of environmental phenol (EP) and paraben (PB) chemicals limits the prevention, diagnosis, and treatment options. This research aims to utilize a risk assessment approach to demonstrate the association of EP and PB exposures detected in the urine samples along with PCa in US men (NHANES data 2005–2015). Further, we employ integrated bioinformatics to examine how EP and PB exposure influences the molecular pathways associated with the progression of PCa. The odds ratio, multiple regression model, and Pearson coefficients were used to evaluate goodness-of-fit analyses. The results demonstrated associations of EPs, PBs, and their metabolites, qualitative and quantitative variables, with PCa. The genes responsive to EP and PB exposures were identified using the Comparative Toxicogenomic Database (CTD). DAVID.6.8, GO, and KEGG enrichment analyses were used to delineate their roles in prostate carcinogenesis. The plug-in CytoHubba and MCODE completed identification of the hub genes in Cytoscape software for their roles in the PCa prognosis. It was then validated by using the UALCAN database by evaluating the expression levels and predictive values of the identified hub genes in prostate cancer prognosis using TCGA data. We demonstrate a significant association of higher levels of EPs and PBs in the urine samples, categorical and numerical confounders, with self-reported PCa cases. The higher expression levels of the hub genes (BUB1B, TOP2A, UBE2C, RRM2, and CENPF) in the aggressive stages (Gleason score > 8) of PCa tissues indicate their potential role(s) in the carcinogenic pathways. Our results present an innovative approach to extrapolate and validate hub genes responsive to the EPs and PBs, which may contribute to the severity of the disease prognosis, especially in the older population of US men.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3