The Antiviral Effect of Isatis Root Polysaccharide against NADC30-like PRRSV by Transcriptome and Proteome Analysis

Author:

Jiang DikeORCID,Zhang Ling,Zhu Guangheng,Zhang Pengfei,Wu Xulong,Yao Xueping,Luo Yan,Yang Zexiao,Ren Meishen,Wang Xinping,Chen ShengORCID,Wang Yin

Abstract

(1) Background: In recent years, the porcine reproductive and respiratory syndrome virus (PRRSV) has become a virulent pathogen that has caused devastating diseases and economic losses worldwide in the swine industry. IRPS has attracted extensive attention in the field of virology. However, it is not clear that IRPS has an antiviral effect on PRRSV at gene and protein levels. (2) Methods: We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. Additionally, a microbiome was used to explore the effects of IRPS on gut microbes. (3) Results: IRPS significantly extenuated the pulmonary pathological lesions and inflammatory response. We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. In the porcine model, 1669 differentially expressed genes (DEGs) and 370 differentially expressed proteins (DEPs) were identified. Analysis of the DEG/DEP-related pathways indicated immune-system and infectious-disease (viral) pathways, such as the NOD-like receptor (NLR) signaling pathway, toll-like receptor (TLR) signaling pathway, and Influenza A-associated signaling pathways. It is noteworthy that IRPS can inhibit NLR-dependent gene expression, then reduce the inflammatory damage. IRPS could exert beneficial effects on the host by regulating the structure of intestinal flora. (4) Conclusions: The antiviral effect of IRPS on PRRSV can be directly achieved by omics techniques. Specifically, the antiviral mechanism of IPRS can be better elucidated by screening target genes and proteins using transcriptome and proteome sequencing, and then performing enrichment and classification according to DEGs and DEPs.

Funder

the Sichuan Province Science and Technology Planning Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proteomics and Metabolomics in Biomedicine;International Journal of Molecular Sciences;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3