Composition and Structural Characteristics of Coal Gasification Slag from Jinhua Furnace and Its Thermochemical Conversion Performance

Author:

Zhao Zitao1,Mo Wenlong1ORCID,Zhao Guihan1,Zhang Yingshuang1,Guo Hao1,Feng Jun1,Yang Zhiqiang2,Wei Dong2,Fan Xing13ORCID,Wei Xian-Yong14

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China

2. Xinjiang Tianyehuihe New Material Co., Ltd., Shihezi 831700, China

3. College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Gasification technology enables the clean and efficient utilization of coal. However, the process generates a significant amount of solid waste—coal gasification slag. This paper focuses on the Jinhua furnace coal gasification slag (fine slag, FS; coarse slag, CS) as the research subject, analyzing its composition and structural characteristics, and discussing the thermochemical conversion performance of both under different atmospheres (N2 and air). The results show that the fixed carbon content in FS is as high as 35.82%, while it is only 1% in CS. FS has a large number of fluffy porous carbon on its surface, which wraps around or embeds into smooth and variously sized spherical inorganic components, with a specific surface area as high as 353 m2/g, and the pore structure is mainly mesoporous. Compared to the raw coal (TYC), the types of organic functional groups in FS and CS are significantly reduced, and the graphitization degree of the carbon elements in FS is higher. The ash in FS is mainly amorphous and glassy, while in CS, it mainly has crystalline structures. The weight loss rates of TYC and FS under an inert atmosphere are 27.49% and 10.38%, respectively; under an air atmosphere, the weight loss rates of TYC and FS are 81.69% and 44.40%, respectively. Based on the analysis of the thermal stability of FS and its high specific surface area, this paper suggests that FS can be used to prepare high-value-added products such as porous carbon or high-temperature-resistant carbon materials through the method of carbon–ash separation.

Funder

National Natural Science Foundation of China

Key Technologies and Engineering Applications of Carbon Neutrality in High Carbon Emission Industries in Xinjiang

High Quality Development Special Project for Science and Technology Supporting Industry from Changji

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3