Bone Morphogenetic Protein-9 Promotes Osteogenic Differentiation and Mineralization in Human Stem-Cell-Derived Spheroids

Author:

Lee Sung-Bin1ORCID,Lee Hyun-Jin2ORCID,Park Jun-Beom12ORCID

Affiliation:

1. Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea

2. Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

Abstract

Background and Objectives: Alkaline phosphatase activity, mineralized matrix, and osteogenic-related gene expression have been shown to increase in response to bone morphogenetic protein-9 (BMP-9). In this study, spheroids derived from human gingival stem cells were used to determine the effects of BMP-9 on cell survival, osteogenesis, and mineralization. Materials and Methods: Human gingival stem cells were used to produce spheroids and then grown to concentrations of 0, 0.1, 1, 10, and 100 ng/mL with BMP-9. On days 1, 3, 5, and 7, morphological examination was carried out. A live/dead assay and Cell Counting Kit-8 was used to assess the vitality of cells. On days 7 and 14, alkaline phosphatase activity assays were carried out using a commercially available kit to examine the osteogenic differentiation of cell spheroids. Alizarin Red Staining was performed on the 7th and 14th days to evaluate mineralization, and RUNX2 and COL1A1 expression levels were evaluated on the 7th and 14th days using real-time polymerase chain reactions. Results: The BMP-9 added at the measured quantities did not appear to alter the shape of the well-formed spheroids produced by stem cells on day 1. In addition, treatment with BMP-9 at doses of 0, 0.1, 1, 10, or 100 ng/mL did not significantly alter cell diameter. Throughout the whole experimental process, viability was maintained. On day 14, the alkaline phosphatase activity in the groups dosed with 0.1, 1, 10, or 100 ng/mL was statistically higher than that in the unloaded control group (p < 0.05). According to qPCR data, the mRNA expression level of RUNX2 with 1 ng/mL dosing was higher on day 7 compared to that of the unloaded control group (p < 0.05). Conclusions: These findings suggest that BMP-9 can be employed to stimulate early osteogenic differentiation in stem cell spheroids.

Funder

Korean Government

Publisher

MDPI AG

Subject

General Medicine

Reference58 articles.

1. BMP signaling and stem cell regulation;Zhang;Dev. Biol.,2005

2. BMP9 signaling in stem cell differentiation and osteogenesis;Lamplot;Am. J. Stem Cells,2013

3. Bone Morphogenetic Protein (BMP) signaling in development and human diseases;Wang;Genes Dis.,2014

4. Bone morphogenetic protein-9 is a circulating vascular quiescence factor;David;Circ. Res.,2008

5. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation;Levet;Blood J. Am. Soc. Hematol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3