The Use of Selected Ion Flow Tube-Mass Spectrometry Technology to Identify Breath Volatile Organic Compounds for the Detection of Head and Neck Squamous Cell Carcinoma: A Pilot Study

Author:

Chandran Dhinashini,Ooi Eng H.ORCID,Watson David IORCID,Kholmurodova FeruzaORCID,Jaenisch Simone,Yazbeck RogerORCID

Abstract

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common form of cancer worldwide, with approximately 630,000 new cases diagnosed each year. The development of low-cost and non-invasive tools for the detection of HNSCC using volatile organic compounds (VOCs) in the breath could potentially improve patient care. The aim of this study was to investigate the feasibility of selected ion flow tube mass spectrometry (SIFT-MS) technology to identify breath VOCs for the detection of HNSCC. Materials and Methods: Breath samples were obtained from HNSCC patients (N = 23) and healthy volunteers (N = 21). Exhaled alveolar breath samples were collected into FlexFoil® PLUS (SKC Limited, Dorset, UK) sampling bags from newly diagnosed, histologically confirmed, untreated patients with HNSCC and from non-cancer participants. Breath samples were analyzed by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) (Syft Technologies, Christchurch, New Zealand) using Selective Ion Mode (SIM) scans that probed for 91 specific VOCs that had been previously reported as breath biomarkers of HNSCC and other malignancies. Results: Of the 91 compounds analyzed, the median concentration of hydrogen cyanide (HCN) was significantly higher in the HNSCC group (2.5 ppb, 1.6–4.4) compared to the non-cancer group (1.1 ppb, 0.9–1.3; Benjamini–Hochberg adjusted p < 0.05). A receiver operating curve (ROC) analysis showed an area under the curve (AUC) of 0.801 (95% CI, 0.65952–0.94296), suggesting moderate accuracy of HCN in distinguishing HNSCC from non-cancer individuals. There were no statistically significant differences in the concentrations of the other compounds of interest that were analyzed. Conclusions: This pilot study demonstrated the feasibility of SIFT-MS technology to identify VOCs for the detection of HNSCC.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3