Physical Activity and Post-Transcriptional Regulation of Aging Decay: Modulation of Pathways in Postmenopausal Osteoporosis

Author:

Vita Federica,Gangemi Sebastiano,Pioggia GiovanniORCID,Trimarchi Fabio,Di Mauro DeboraORCID

Abstract

Background and Objectives: Bones and the skeletal muscle play a key role in human physiology as regulators of metabolism in the whole organism. Bone tissue is identified as a complex and dynamic living unit that could react to physical activity. Hormones, growth factors, signaling factors, and environmental factors control osteogenesis, and it could be regulated at a post-transcriptional level. MicroRNAs (miRNAs) can interfere with mRNAs translation. Increasing data suggest that miRNAs, through different pathways, are involved in the regulation of bone marrow mesenchymal stem cells (BMSCs) differentiation and physical activity-induced bone remodeling. The purpose of this narrative review is to investigate the potential protective role played by physical activity in affecting miRNAs expression in close tissues and elaborate on the complex network of interplay that could drive various metabolic responses of the bone to physical activity. Materials and Methods: A bibliographic search of the scientific literature was carried out in scientific databases to investigate the possible effect of physical activity on age-related features detected in the musculoskeletal system. Results: Several studies suggested that the musculoskeletal system interacting at a biomolecular level could establish crosstalk between bone and muscle in an endocrine or paracrine way through myokines released by muscle at the periosteal interface or in the bloodstream, such as irisin. Mechanical stimuli have a key role in bone formation and resorption, increasing osteogenesis and downregulating adipogenesis of BMSC via regulation of expression of runt-related transcription factor 2 (Runx2) and peroxisome proliferator-activated receptor gamma (PPARγ), respectively. Conclusions: Increasing data suggest that miRNAs, through different pathways, are involved in the regulation of BMSCs differentiation and physical activity-induced bone remodeling. Modulation of miRNAs following physical exercise represents an interesting field of investigation since these non-coding RNAs may be considered defenders against degenerative diseases and as well as useful prognostic markers in skeletal and muscle-skeletal diseases, such as osteoporosis.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3