Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy

Author:

Kandil Howida1,Ahmed Esraa1,Fouad Nada1,Ali Dabbous Ola2,Niazy Maha3,Mohamed Tarek1ORCID

Affiliation:

1. Department of Medical Laser Applications, Laser Institute for Research Application, Beni-Suef University, Beni Suef 2722165, Egypt

2. Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza 12611, Egypt

3. Operative Dentistry Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo 4434004, Egypt

Abstract

Introduction: The purpose of this study is to investigate and compare the effects of the antimicrobial agents Moringa oleifera and bioactive glass nanoparticles activated by femtosecond laser light on the biomimetic dentin remineralization using teeth having carious dentin ICDAS code 3. Methods and Materials: A total of 27 dentin surface samples were divided into three groups: the first group was treated with a Moringa oleifera extract, while the second group was treated with bioactive glass nanoparticles, and as for the control group, the third group received no additional agent. All groups were subjected to femtosecond laser light at three different wavelengths: 390 nm, 445 nm, and 780 nm. The photoactivation of each sample was achieved using the femtosecond laser light for 5 min with an average power rating of 300 mW, a pulse duration of 100 fs, and a pulse repetition rate of 80 Hz. The mineral content of the samples was obtained and analyzed using the laser-induced breakdown spectroscopy (LIBS). The LIBS analysis was conducted with the following laser light parameters: average power of ~215 mW, wavelength of 532 nm, pulse duration of 10 ns, and a pulse repetition rate of 10 Hz. Results: Most studied samples exhibited a relative increase in the mineral content that may enhance biomimetic remineralization. Moringa oleifera photoactivated by femtosecond laser light at 445 nm achieved a significant increase in mineral content. Conclusion: Using the femtosecond laser light to activate the relatively cheap and commercially available antimicrobial agent Moringa oleifera supports the strategy of minimal invasive approaches for the treatment and biomimetic remineralization of carious dentin ICDAS code 3.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3