Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams

Author:

Marquez Ronald1ORCID,Salager Jean-Louis2ORCID

Affiliation:

1. Department of Chemical Engineering, Agricultural and Agrifood Technology, University of Girona, 17003 Girona, Spain

2. Laboratory of Formulation, Interfaces, Rheology and Processes (FIRP), University of Los Andes, Mérida 5101, Venezuela

Abstract

This work provides a comprehensive review of experimental methods used to measure rheological properties of interfacial layers stabilized by surfactants, asphaltenes, and proteins that are relevant to systems with large interfacial areas, such as emulsions and foams. Among the shear methods presented, the deep channel viscometer, bicone rheometer, and double-wall ring rheometers are the most utilized. On the other hand, the main dilational rheology techniques discussed are surface waves, capillary pressure, oscillating Langmuir trough, oscillating pendant drop, and oscillating spinning drop. Recent developments—including machine learning and artificial intelligence (AI) models, such as artificial neural networks (ANN) and convolutional neural networks (CNN)—to calculate interfacial tension from drop shape analysis in shorter times and with higher precision are critically analyzed. Additionally, configurations involving an Atomic Force Microscopy (AFM) cantilever contacting bubble, a microtensiometer platform, rectangular and radial Langmuir troughs, and high-frequency oscillation drop setups are presented. The significance of Gibbs–Marangoni effects and interfacial rheological parameters on the (de)stabilization of emulsions is also discussed. Finally, a critical review of the recent literature on the measurement of interfacial rheology is presented.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3