Properties of Protein Hydrolysates and Bioinformatics Prediction of Peptides Derived from Thermal and Enzymatic Process of Skipjack Tuna (Katsuwonus pelamis) Roe

Author:

Phetchthumrongchai Thithi,Tachapuripunya VirojORCID,Chintong Sutasinee,Roytrakul SittirukORCID,E-kobon TeerasakORCID,Klaypradit Wanwimol

Abstract

Currently, the use of skipjack tuna (Katsuwonus pelamis) roe to produce hydrolysate is limited, although it is a potentially valuable resource. This study aimed to investigate the physical and chemical characteristics of protein hydrolysates from tuna roe using autoclave and enzymes (alcalase and trypsin at 0.5 and 1.0% w/v). Bioinformatics was also applied to analyze the identified peptides. The hydrolysates were determined for amino acid composition, peptide profile patterns, antioxidant activity, solubility and foaming properties. The proteins were separated by SDS-PAGE before tryptic digestion and peptide identification by nano LC-ESI-MS/MS. The putative bioactivities of the identified peptides were predicted using bioinformatics prediction tools. The main amino acids found in all hydrolysates were cysteine, glycine and arginine (16.26–20.65, 10.67–13.61 and 10.87–12.08 g/100 g protein, respectively). The hydrolysates obtained from autoclaving showed lower molecular weights than those by the enzymatic method. The 0.1 g/mL concentration of hydrolysates provided higher antioxidant activities compared to the others. All hydrolysates had high solubility and exhibited foaming capacity and foam stability. Putative anti-hypertensive, anti-virus and anti-parasite activities were highly abundant within the obtained peptides. Moreover, predicted muti-bioactivity was indicated for seven novel peptides. In the future work, these peptides should be experimentally validated for further applications.

Funder

Kasetsart University Research and Development Institute

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3