Ocean-Current-Motion-Model-Based Routing Protocol for Void-Avoided UASNs

Author:

Tan Zhicheng123,Li Yun4,Sun Haixin135ORCID,Hong Shaohua135,Sun Shanlin2

Affiliation:

1. School of Informatics, Xiamen University, Xiamen 361005, China

2. School of Aeronautics and Astronautics, Guilin University of Aerospace Technology, Guilin 541004, China

3. Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China

4. School of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Nanning 530031, China

5. Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application, Ministry of Natural Resources, Xiamen 361005, China

Abstract

An increasing number of scholars are researching underwater acoustic sensor networks (UASNs), including the physical layer, the protocols of the routing layer, the MAC layer, and the cross-layer. In UASNs, the ultimate goal is to transmit data from the seabed to the surface, and a well-performed routing protocol can effectively achieve this goal. However, the nodes in the network are prone to drift, and the topology is easily changed because of the movement caused by ocean currents, resulting in a routing void. The data cannot be effectively aggregated to the sink terminal on the surface. Thus, it is extremely important to determine how to find an alternative node as a relay node after node drift and how to rebuild a reliable transmission path. Although many relay routing protocols have been proposed to avoid routing voids, few of them consider the relay node selection between the outage probability and the ocean current model. Therefore, we propose an ocean current motion model based routing (OCMR) protocol to avoid the routing void in UASNs. We predicted underwater node movement based on the ocean current motion model and designed a protection radius to construct a limited search coverage based on the optimal outage probability; then, the node with the best fitness value within the protection radius was selected as the alternative relay node using an improved WOA. In OCMR, the problem of the routing void caused by ocean current motion is effectively suppressed. The simulation results show that, compared with VBF, HH-VBF, and QELAR, the proposed OCMR platform performs well in terms of the PDR (packet delivery ratio), average end-to-end delay, and average energy consumption.

Funder

Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province

National Natural Science Foundation of China

Key Research and Development Program of Guangxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3