Ricci Curvature on Birth-Death Processes

Author:

Hua Bobo1,Münch Florentin23

Affiliation:

1. School of Mathematical Sciences, LMNS, Fudan University, Shanghai 200433, China

2. Department of Mathematics, University of Potsdam, 14469 Potsdam, Germany

3. Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract

In this paper, we study curvature dimension conditions on birth-death processes which correspond to linear graphs, i.e., weighted graphs supported on the infinite line or the half line. We give a combinatorial characterization of Bakry and Émery’s CD(K,n) condition for linear graphs and prove the triviality of edge weights for every linear graph supported on the infinite line Z with non-negative curvature. Moreover, we show that linear graphs with curvature decaying not faster than −R2 are stochastically complete. We deduce a type of Bishop-Gromov comparison theorem for normalized linear graphs. For normalized linear graphs with non-negative curvature, we obtain the volume doubling property and the Poincaré inequality, which yield Gaussian heat kernel estimates and parabolic Harnack inequality by Delmotte’s result. As applications, we generalize the volume growth and stochastic completeness properties to weakly spherically symmetric graphs. Furthermore, we give examples of infinite graphs with a positive lower curvature bound.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference31 articles.

1. The heat equation on noncompact Riemannian manifolds;Mat. Sb.,1991

2. Saloff-Coste, L. (1995). Potential Theory and Degenerate Partial Differential Operators, Springer.

3. On the parabolic kernel of the Schrödinger operator;Li;Acta Math.,1986

4. Parabolic Harnack inequality and estimates of Markov chains on graphs;Delmotte;Rev. Mat. Iberoam.,1999

5. Heat semigroup on a complete Riemannian manifold;Hsu;Ann. Probab.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3