An Intelligent Battery Energy Storage-Based Controller for Power Quality Improvement in Microgrids

Author:

Alshehri JaberORCID,Khalid MuhammadORCID,Alzahrani Ahmed

Abstract

Modern power systems rely on renewable energy sources and distributed generation systems more than ever before; the combination of those two along with advanced energy storage systems contributed widely to the development of microgrids (MGs). One of the significant technical challenges in MG applications is to improve the power quality of the system subjected to unknown disturbances. Hence innovative control strategies are vital to cope with the problem. In this paper, an innovative online intelligent energy storage-based controller is proposed to improve the power quality of a MG system; in particular, voltage and frequency regulation at steady state conditions are targeted. The MG system under consideration in this paper consists of two distributed generators, a diesel synchronous generator, and a photovoltaic power system integrated with a battery energy storage system. The proposed control approach is based on hybrid differential evolution optimization (DEO) and artificial neural networks (ANNs). The controller parameters have been optimized under several operating conditions. The obtained input and output patterns are consequently used to train the ANNs in order to perform an online tuning for the controller parameters. Finally, the proposed DEO-ANN methodology has been evaluated under random disturbances, and its performance is compared with a benchmark controller.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective dynamic energy management algorithm for grid-interactive microgrid with hybrid energy storage system;Scientific Reports;2024-08-31

2. An Intelligent Control And Management Technique For RES Based Microgrid With Hybrid Energy Storage System;2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS);2024-04-26

3. Novel Shunt Capacitor Based Industrial Power Management Approach;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

4. Dynamic fuzzy learning based hybrid GWO-CSA for optimal planning of PV, BESS and DSTATCOM with network reconfiguration;Discover Applied Sciences;2024-02-07

5. Techno‐economic optimization framework of renewable hybrid photovoltaic/wind turbine/fuel cell energy system using artificial rabbits algorithm;IET Renewable Power Generation;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3