Abstract
Modern power systems rely on renewable energy sources and distributed generation systems more than ever before; the combination of those two along with advanced energy storage systems contributed widely to the development of microgrids (MGs). One of the significant technical challenges in MG applications is to improve the power quality of the system subjected to unknown disturbances. Hence innovative control strategies are vital to cope with the problem. In this paper, an innovative online intelligent energy storage-based controller is proposed to improve the power quality of a MG system; in particular, voltage and frequency regulation at steady state conditions are targeted. The MG system under consideration in this paper consists of two distributed generators, a diesel synchronous generator, and a photovoltaic power system integrated with a battery energy storage system. The proposed control approach is based on hybrid differential evolution optimization (DEO) and artificial neural networks (ANNs). The controller parameters have been optimized under several operating conditions. The obtained input and output patterns are consequently used to train the ANNs in order to perform an online tuning for the controller parameters. Finally, the proposed DEO-ANN methodology has been evaluated under random disturbances, and its performance is compared with a benchmark controller.
Funder
King Fahd University of Petroleum and Minerals
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献