Using Sequence Analyses to Quantitatively Measure Oropharyngeal Swallowing Temporality in Point-of-Care Ultrasound Examinations: A Pilot Study

Author:

Lam Wilson Yiu Shun12ORCID,Kwong Elaine12ORCID,Chan Huberta Wai Tung1,Zheng Yong-Ping23ORCID

Affiliation:

1. Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China

2. Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China

3. Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

Abstract

(1) Background: Swallowing is a complex process that comprises well-timed control of oropharyngeal and laryngeal structures to achieve airway protection and swallowing efficiency. To understand its temporality, previous research adopted adherence measures and revealed obligatory pairs in healthy swallows and the effect of aging and bolus type on the variability of event timing and order. This study aimed to (i) propose a systemic conceptualization of swallowing physiology, (ii) apply sequence analyses, a set of information-theoretic and bioinformatic methods, to quantify and characterize swallowing temporality, and (iii) investigate the effect of aging and dysphagia on the quantified variables using sequence analyses measures. (2) Method: Forty-three participants (17 young adults, 15 older adults, and 11 dysphagic adults) underwent B-mode ultrasound swallowing examinations at the mid-sagittal plane of the submental region. The onset, maximum, and offset states of hyoid bone displacement, geniohyoid muscle contraction, and tongue base retraction were identified and sorted to form sequences which were analyzed using an inventory of sequence analytic techniques; namely, overlap coefficients, Shannon entropy, and longest common subsequence algorithms. (3) Results: The concurrency of movement sequence was found to be significantly impacted by aging and dysphagia. Swallowing sequence variability was also found to be reduced with age and the presence of dysphagia (H(2) = 52.253, p < 0.001, η2 = 0.260). Four obligatory sequences were identified, and high adherence was also indicated in two previously reported pairs. These results provided preliminary support for the validity of sequence analyses for quantifying swallowing sequence temporality. (4) Conclusions: A systemic conceptualization of human deglutition permits a multi-level quantitative analysis of swallowing physiology. Sequence analyses are a set of promising quantitative measurement techniques for point-of-care ultrasound (POCUS) swallowing examinations and outcome measures for swallowing rehabilitation and evaluation of associated physiological conditions, such as sarcopenia. Findings in the current study revealed physiological differences among healthy young, healthy older, and dysphagic adults. They also helped lay the groundwork for future AI-assisted dysphagia assessment and outcome measures using POCUSs. Arguably, the proposed conceptualization and analyses are also modality-independent measures that can potentially be generalized for other instrumental swallowing assessment modalities.

Funder

Health and Medical Research Fund (HMRF), Health Bureau, the Hong Kong SAR government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3