Multi-Sensor Fusion and Machine Learning for Forest Age Mapping in Southeastern Tibet

Author:

Chi Zelong12ORCID,Xu Kaipeng12

Affiliation:

1. Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa 850000, China

2. Institute of Ecological Conservation and Restoration, Chinese Academy for Environmental Planning (CAEP), Beijing 100043, China

Abstract

Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for forest age estimation that integrates multi-source remote-sensing data with machine learning. The study employs the Continuous Degradation Detection (CODED) algorithm combined with spectral unmixing models and Normalized Difference Fraction Index (NDFI) time series analysis to update forest disturbance information and provide annual forest distribution, mapping young forest distribution. For undisturbed forests, we compared 12 machine-learning models and selected the Random Forest model for age prediction. The input variables include multiscale satellite spectral bands (Sentinel-2 MSI, Landsat series, PROBA-V, MOD09A1), vegetation parameter products (canopy height, productivity), data from the Global Ecosystem Dynamics Investigation (GEDI), multi-band SAR data (C/L), vegetation indices (e.g., NDVI, LAI, FPAR), and environmental factors (climate seasonality, topography). The results indicate that the forests in Southeastern Tibet are predominantly overmature (>120 years), accounting for 87% of the total forest cover, while mature (80–120 years), sub-mature (60–80 years), intermediate-aged (40–60 years), and young forests (< 40 years) represent relatively lower proportions at 9%, 1%, 2%, and 1%, respectively. Forest age exhibits a moderate positive correlation with stem biomass (r = 0.54) and leaf-area index (r = 0.53), but weakly negatively correlated with L-band radar backscatter (HV polarization, r = −0.18). Significant differences in reflectance among different age groups are observed in the 500–1000 nm spectral band, with 100 m resolution PROBA-V data being the most suitable for age prediction. The Random Forest model achieved an overall accuracy of 62% on the independent validation set, with canopy height, L-band radar data, and temperature seasonality being the most important predictors. Compared with 11 other machine-learning models, the Random Forest model demonstrated higher accuracy and stability in estimating forest age under complex terrain and cloudy conditions. This study provides an expandable technical framework for forest age estimation in complex terrain areas, which is of significant scientific and practical value for sustainable forest resource management and global forest resource monitoring.

Funder

Institute of Ecological Conservation and Restoration of the Chinese Academy of Environmental Planning

Publisher

MDPI AG

Reference104 articles.

1. Thirty-meter map of young forest age in China;Xiao;Earth Syst. Sci. Data,2023

2. China’s current forest age structure will lead to weakened carbon sinks in the near future;Shang;Innovation,2023

3. A 2020 forest age map for China with 30 m resolution;Cheng;Earth Syst. Sci. Data,2024

4. A review of forest carbon cycle models on spatiotemporal scales;Zhao;J. Clean. Prod.,2022

5. Age-dependent forest carbon sink: Estimation via inverse modeling;Zhou;J. Geophys. Res. Biogeosci.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3