Machine Learning Driven Fluidity and Rheological Properties Prediction of Fresh Cement-Based Materials

Author:

Liu Yi12,Mohammed Zeyad M. A.12,Ma Jialu12,Xia Rui12,Fan Dongdong3,Tang Jie3,Yuan Qiang12

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, China

3. Anhui Engineer Material Technology Co., Ltd. of CTCE Group, Hefei 230041, China

Abstract

Controlling workability during the design stage of cement-based material mix ratios is a highly time-consuming and labor-intensive task. Applying artificial intelligence (AI) methods to predict and optimize the workability of cement-based materials can significantly enhance the efficiency of mix design. In this study, experimental testing was conducted to create a dataset of 233 samples, including fluidity, dynamic yield stress, and plastic viscosity of cement-based materials. The proportions of cement, fly ash (FA), silica fume (SF), water, superplasticizer (SP), hydroxypropyl methylcellulose (HPMC), and sand were selected as inputs. Machine learning (ML) methods were employed to establish predictive models for these three early workability indicators. To improve prediction capability, optimized hybrid models, such as Particle Swarm Optimization (PSO)-based CatBoost and XGBoost, were adopted. Furthermore, the influence of individual input variables on each workability indicator of the cement-based material was examined using Shapley Additive Explanations (SHAP) and Partial Dependence Plot (PDP) analyses. This study provides a novel reference for achieving rapid and accurate control of cement-based material workability.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3