Affiliation:
1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou 510006, China
2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract
To address the challenges of complex backgrounds, small defect sizes, and diverse defect types in defect detection of wire bonding X-ray images, this paper proposes a convolutional-neural-network-based defect detection method called YOLO-CSS. This method designs a novel feature extraction network that effectively captures semantic features from different gradient information. It utilizes a self-adaptive weighted multi-scale feature fusion module called SMA which adaptively weights the contribution of detection results based on different scales of feature maps. Simultaneously, skip connections are employed at the bottleneck of the network to ensure the integrity of feature information. Experimental results demonstrate that on the wire bonding X-ray defect image dataset, the proposed algorithm achieves mAP 0.5 and mAP 0.5–0.95 values of 97.3% and 72.1%, respectively, surpassing the YOLO series algorithms. It also exhibits certain advantages in terms of model size and detection speed, effectively balancing detection accuracy and speed.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Jihua Laboratory Foundation of the Guangdong Province Laboratory of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献