Network Bursts in 3D Neuron Clusters Cultured on Microcontact-Printed Substrates

Author:

Liang Qian1,Chen Zhe2,Chen Xie1ORCID,Huang Qiang1,Sun Tao1

Affiliation:

1. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

Microcontact printing (CP) is widely used to guide neurons to form 2D networks for neuroscience research. However, it is still difficult to establish 3D neuronal cultures on the CP substrate even though 3D neuronal structures are able to recapitulate critical aspects of native tissue. Here, we demonstrate that the reduced cell-substrate adhesion caused by the CP substrate could conveniently facilitate the aggregate formation of large-scale 3D neuron cluster networks. Furthermore, based on the quantitative analysis of the calcium activity of the resulting cluster networks, the effect of cell seeding density and local restriction of the CP substrate on network dynamics was investigated in detail. The results revealed that cell aggregation degree, rather than cell number, could take on the main role of the generation of synchronized network-wide calcium oscillation (network bursts) in the 3D neuron cluster networks. This finding may provide new insights for easy and cell-saving construction of in vitro 3D pathological models of epilepsy, and into deciphering the onset and evolution of network bursts in developmental nerve systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3