A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study

Author:

Curtis Juliana1,Stitle Landon1,Certain Jessica1,Murchland Madeline1,Piszel Charlotte1,Vest Jordan1,McLeod Claire L.1ORCID,Krekeler Mark P. S.12

Affiliation:

1. Department of Geology and Environmental Earth Science, Miami University, Shideler Hall, Oxford, OH 45056, USA

2. Department of Mathematical and Physical Sciences, Miami University Hamilton, Hamilton, OH 45011, USA

Abstract

Interpersonal violence is a rising issue in global society and new approaches are being sought to combat the problem. Within this context, expanding forensic techniques to better document violent crime scenes is critical for improving and acquiring legal evidence, such as proving or tracing contact between victims and suspects. This project aims to demonstrate the potential for forensic investigations in the context of interpersonal violence using a field-based reflective spectroscopy approach. For this, a common cosmetic, Wet‘N’Wild “Color Icon” blush in the shade “Pearlescent Pink”, was mineralogically characterized using transmission electron microscopy and powder X-ray diffraction and subsequently investigated via reflective spectroscopy on a variety of common substrates. Differing amounts of the cosmetic product, ranging from 0.001 g to 0.075 g, were applied to a variety of substrates using a simple push method to simulate forcible contact and material transfer. Substrates included a pine wood block; (calcareous) sand from Tulum, Mexico; Ottawa sand; tile; Pergo wood; linoleum; closet material; carpets; and fabrics. The reflective spectra of cosmetic–substrate combinations were measured via an ASD FieldSpec 4 Hi-Res spectroradiometer. The Wet‘N’Wild cosmetic was reliably detected on various substrates relevant to crime scenes. Minor amounts (as low as 0.02 mg/mm2) could be detected, and average limits of detection of 0.03 mg/mm2) were achieved; however, a calcareous sand (Tulum) had a high level of detection (>0.38 mg/mm2), suggesting that further investigation is needed for more complex sand substrates. The use of the ASD spectroradiometer as a forensic tool within the context of crime scene documentation shows promise. Future work should expand the characterization of cosmetic materials across a broad range of substrates and consider systematic studies of specific population groups. Furthermore, combining this approach with hyperspectral imaging at crime scenes is a promising future direction for crime scene documentation. This work therefore demonstrates a novel method for investigating cosmetics within the context of interpersonal violence and provides a foundation for future laboratory and field work using the ASD FieldSpec 4 and hyperspectral imaging systems.

Funder

NIJ Forensic Science R&D award

NSF GEOPAThs award

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3