A Convolutional Neural Network-Based Quantization Method for Block Compressed Sensing of Images

Author:

Gong Jiulu1,Chen Qunlin2,Zhu Wei3,Wang Zepeng1ORCID

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. North Automatic Control Technology Institute, Taiyuan 030006, China

3. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Abstract

Block compressed sensing (BCS) is a promising method for resource-constrained image/video coding applications. However, the quantization of BCS measurements has posed a challenge, leading to significant quantization errors and encoding redundancy. In this paper, we propose a quantization method for BCS measurements using convolutional neural networks (CNN). The quantization process maps measurements to quantized data that follow a uniform distribution based on the measurements’ distribution, which aims to maximize the amount of information carried by the quantized data. The dequantization process restores the quantized data to data that conform to the measurements’ distribution. The restored data are then modified by the correlation information of the measurements drawn from the quantized data, with the goal of minimizing the quantization errors. The proposed method uses CNNs to construct quantization and dequantization processes, and the networks are trained jointly. The distribution parameters of each block are used as side information, which is quantized with 1 bit by the same method. Extensive experiments on four public datasets showed that, compared with uniform quantization and entropy coding, the proposed method can improve the PSNR by an average of 0.48 dB without using entropy coding when the compression bit rate is 0.1 bpp.

Funder

State Key Laboratory of Explosion Science and Safety Protection

Beijing Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3