Compact and Efficient Topological Mapping for Large-Scale Environment with Pruned Voronoi Diagram

Author:

Qi Yao,Wang Rendong,He Binbing,Lu Feng,Xu Youchun

Abstract

Topological maps generated in complex and irregular unknown environments are meaningful for autonomous robots’ navigation. To obtain the skeleton of the environment without obstacle polygon extraction and clustering, we propose a method to obtain high-quality topological maps using only pure Voronoi diagrams in three steps. Supported by Voronoi vertex’s property of the largest empty circle, the method updates the global topological map incrementally in both dynamic and static environments online. The incremental method can be adapted to any fundamental Voronoi diagram generator. We maintain the entire space by two graphs, the pruned Voronoi graph for incremental updates and the reduced approximated generalized Voronoi graph for routing planning requests. We present an extensive benchmark and real-world experiment, and our method completes the environment representation in both indoor and outdoor areas. The proposed method generates a compact topological map in both small- and large-scale scenarios, which is defined as the total length and vertices of topological maps. Additionally, our method has been shortened by several orders of magnitude in terms of the total length and consumes less than 30% of the average time cost compared to state-of-the-art methods.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Map representations for mobile robot localization;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

2. E-Planner: An Efficient Path Planner on a Visibility Graph in Unknown Environments;IEEE Transactions on Instrumentation and Measurement;2024

3. Semi-automated Map Generation Using Space Segmentation and Generalized Voronoi Graph for Robot Navigation;Lecture Notes in Electrical Engineering;2024

4. Guided-TargetTree-Hybrid_A* Path Planning Algorithm for Vertical Parking;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15

5. NT-ARS-RRT: A novel non-threshold adaptive region sampling RRT algorithm for path planning;Journal of King Saud University - Computer and Information Sciences;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3