Increasing Fatigue Life of 09Mn2Si Steel by Helical Rolling: Theoretical–Experimental Study on Governing Role of Grain Boundaries

Author:

Panin SergeyORCID,Vlasov IlyaORCID,Maksimov Pavel,Moiseenko Dmitry,Maruschak PavloORCID,Yakovlev Alexander,Schmauder SiegfriedORCID,Berto Filippo

Abstract

The structure and mechanical properties of the 09Mn2Si high-strength low-alloyed steel after the five-stage helical rolling (HR) were studied. It was revealed that the fine-grained structure had been formed in the surface layer ≈ 1 mm deep as a result of severe plastic strains. In the lower layers, the “lamellar” structure had been formed, which consisted of thin elongated ferrite grains oriented in the HR direction. It was shown that the five-stage HR resulted in the increase in the steel fatigue life by more than 3.5 times under cyclic tension. The highest values of the number of cycles before failure were obtained for the samples cut from the bar core. It was demonstrated that the degree of the elastic energy dissipation in the steel samples under loading directly depended on the area of the grain boundaries as well as on the grain shapes. The fine-grained structure possessed the maximum value of the average torsional energy among all the studied samples, which caused the local material structure transformation and the decrease in the elastic energy level. This improved the crack resistance under the cyclic mechanical loading. The effect of the accumulation of the rotational strain modes at the grain boundaries was discovered, which caused the local structure transformation at the boundary zones. In the fine-grained structure, the formation of grain conglomerates was observed, which increased the values of the specific modulus of the moment of force. This could be mutually compensated due to the small sizes of grains. At the same time, the coarse-grained structures were characterized by the presence of the small number of grains with a high level of the moments of forces at their boundaries. They could result in trans-crystalline cracking.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3