Shape Matters: Detecting Vertebral Fractures Using Differentiable Point-Based Shape Decoding

Author:

Hempe Hellena1ORCID,Bigalke Alexander12ORCID,Heinrich Mattias Paul1ORCID

Affiliation:

1. Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany

2. Dräger, Drägerwerk AG & Co. KGaA, 23558 Lübeck, Germany

Abstract

Background: Degenerative spinal pathologies are highly prevalent among the elderly population. Timely diagnosis of osteoporotic fractures and other degenerative deformities enables proactive measures to mitigate the risk of severe back pain and disability. Methods: We explore the use of shape auto-encoders for vertebrae, advancing the state of the art through robust automatic segmentation models trained without fracture labels and recent geometric deep learning techniques. Our shape auto-encoders are pre-trained on a large set of vertebrae surface patches. This pre-training step addresses the label scarcity problem faced when learning the shape information of vertebrae for fracture detection from image intensities directly. We further propose a novel shape decoder architecture: the point-based shape decoder. Results: Employing segmentation masks that were generated using the TotalSegmentator, our proposed method achieves an AUC of 0.901 on the VerSe19 testset. This outperforms image-based and surface-based end-to-end trained models. Our results demonstrate that pre-training the models in an unsupervised manner enhances geometric methods like PointNet and DGCNN. Conclusion: Our findings emphasize the advantages of explicitly learning shape features for diagnosing osteoporotic vertebrae fractures. This approach improves the reliability of classification results and reduces the need for annotated labels.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3