AI-Based Automatic Detection and Classification of Diabetic Retinopathy Using U-Net and Deep Learning

Author:

Bilal Anas,Zhu Liucun,Deng Anan,Lu Huihui,Wu NingORCID

Abstract

Artificial intelligence is widely applied to automate Diabetic retinopathy diagnosis. Diabetes-related retinal vascular disease is one of the world’s most common leading causes of blindness and vision impairment. Therefore, automated DR detection systems would greatly benefit the early screening and treatment of DR and prevent vision loss caused by it. Researchers have proposed several systems to detect abnormalities in retinal images in the past few years. However, Diabetic Retinopathy automatic detection methods have traditionally been based on hand-crafted feature extraction from the retinal images and using a classifier to obtain the final classification. DNN (Deep neural networks) have made several changes in the previous few years to assist overcome the problem mentioned above. We suggested a two-stage novel approach for automated DR classification in this research. Due to the low fraction of positive instances in the asymmetric Optic Disk (OD) and blood vessels (BV) detection system, preprocessing and data augmentation techniques are used to enhance the image quality and quantity. The first step uses two independent U-Net models for OD (optic disc) and BV (blood vessel) segmentation. In the second stage, the symmetric hybrid CNN-SVD model was created after preprocessing to extract and choose the most discriminant features following OD and BV extraction using Inception-V3 based on transfer learning, and detects DR by recognizing retinal biomarkers such as MA (microaneurysms), HM (hemorrhages), and exudates (EX). On EyePACS-1, Messidor-2, and DIARETDB0, the proposed methodology demonstrated state-of-the-art performance, with an average accuracy of 97.92%, 94.59%, and 93.52%, respectively. Extensive testing and comparisons with baseline approaches indicate the efficacy of the suggested methodology.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3