Bipolar Membranes for Direct Borohydride Fuel Cells—A Review

Author:

Belhaj Ines1ORCID,Faria Mónica1ORCID,Šljukić Biljana1ORCID,Geraldes Vitor1ORCID,Santos Diogo M. F.1ORCID

Affiliation:

1. Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal

Abstract

Direct liquid fuel cells (DLFCs) operate directly on liquid fuel instead of hydrogen, as in proton-exchange membrane fuel cells. DLFCs have the advantages of higher energy densities and fewer issues with the transportation and storage of their fuels compared with compressed hydrogen and are adapted to mobile applications. Among DLFCs, the direct borohydride–hydrogen peroxide fuel cell (DBPFC) is one of the most promising liquid fuel cell technologies. DBPFCs are fed sodium borohydride (NaBH4) as the fuel and hydrogen peroxide (H2O2) as the oxidant. Introducing H2O2 as the oxidant brings further advantages to DBPFC regarding higher theoretical cell voltage (3.01 V) than typical direct borohydride fuel cells operating on oxygen (1.64 V). The present review examines different membrane types for use in borohydride fuel cells, particularly emphasizing the importance of using bipolar membranes (BPMs). The combination of a cation-exchange membrane (CEM) and anion-exchange membrane (AEM) in the structure of BPMs makes them ideal for DBPFCs. BPMs maintain the required pH gradient between the alkaline NaBH4 anolyte and the acidic H2O2 catholyte, efficiently preventing the crossover of the involved species. This review highlights the vast potential application of BPMs and the need for ongoing research and development in DBPFCs. This will allow for fully realizing the significance of BPMs and their potential application, as there is still not enough published research in the field.

Funder

Fundação para a Ciência e a Tecnologia

CeFEMA

FCT

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3