Multiphysics Modeling and Analysis of a Solar Desalination Process Based on Vacuum Membrane Distillation

Author:

Shuldes Benjamin N.,Bavarian Mona,Nejati SiamakORCID

Abstract

A hollow fiber vacuum membrane distillation (VMD) module was modeled using finite element analysis, and the results were used to conduct an exergy efficiency analysis for a solar-thermal desalination scheme. The performance of the VMD module was simulated under various operating conditions and membrane parameters. Membrane porosity, tortuosity, pore diameter, thickness, and fiber length were varied, along with feed temperature and feed configuration. In all cases, polarization phenomena were seen to inhibit the performance of the module. Under VMD operation, polarization of salt concentration was seen to be the main determining factor in the reduction of permeate flux. Within the boundary layer, salt concentration was seen to rapidly increase from the feed mass fraction of 0.035 to the saturation point. The increase in salt concentration led to a decrease in saturation pressure, the driving force for separation. Charging the feed into the shell instead of the lumen side of the membranes resulted in a further decrease in permeate flux. It is shown that adding a baffling scheme to the surface of the fibers can effectively reduce polarization phenomena and improve permeate flux. Increasing the overall recovery ratio was seen to increase the exergy efficiency of the system. Exergy efficiency was seen to have almost no dependency on membrane parameters due to the low recovery ratio in a single pass and the high heating duty required to reach the desired temperature for the feed stream.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3