Intravenous Nanocarrier for Improved Efficacy of Quercetin and Curcumin against Breast Cancer Cells: Development and Comparison of Single and Dual Drug–Loaded Formulations Using Hemolysis, Cytotoxicity and Cellular Uptake Studies

Author:

Rahman Mohammad AkhlaquerORCID,Mittal Vineet,Wahab ShadmaORCID,Alsayari AbdulrhmanORCID,Bin Muhsinah AbdullatifORCID,Almaghaslah DaliaORCID

Abstract

The present work highlights the suitability of an oil-based nanocarrier to deliver quercetin (Q) and curcumin (C) through the intravenous route for treatment of breast cancer. The nanoemulsion prepared by the modified emulsification-solvent evaporation method resulted in particle size (<30 nm), polydispersity index (<0.2), zeta potential (<10 mV), optimum viscosity, high encapsulation efficiency and drug loading for both drugs. The pH and osmolarity of the nanoemulsion were about 7.0 and 280 mOsm, respectively, demonstrated its suitability for intravenous administration. In-vitro release of drugs from all the formulations demonstrated initial fast release followed by sustained release for a period of 48 h. The fabricated single and dual drug–loaded nanoemulsion (QNE, CNE, QC-NE) exhibited moderate hemolysis at a concentration of 50 μg/mL. The % hemolysis caused by all the formulations was similar to their individual components (p ˃ 0.05) and demonstrated the biocompatibility of the nanoemulsion with human blood. In vitro cytotoxic potential of single and dual drug–loaded nanoemulsions were determined against breast cancer cells (MF-7). The IC50 value for QNE and CNE were found to be 40.2 ± 2.34 µM and 28.12 ± 2.07 µM, respectively. The IC50 value for QC-NE was 21.23 ± 2.16 µM and demonstrated the synergistic effect of both the drugs. The internalization of the drug inside MF-7 cells was detected by cellular uptake study. The cellular uptake of QNE and CNE was approximately 3.9-fold higher than free quercetin and curcumin (p < 0.0001). This strategically designed nanoemulsion appears to be a promising drug delivery system for the proficient primary preclinical development of quercetin and curcumin as therapeutic modalities for the treatment of breast cancer.

Funder

Deanship of Scientific Research, King Khalid University, Abha,

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3