Differential Antimicrobial Effect of Essential Oils and Their Main Components: Insights Based on the Cell Membrane and External Structure

Author:

Andrade-Ochoa SergioORCID,Chacón-Vargas Karla Fabiola,Sánchez-Torres Luvia EnidORCID,Rivera-Chavira Blanca Estela,Nogueda-Torres Benjamín,Nevárez-Moorillón Guadalupe VirginiaORCID

Abstract

The biological activity of essential oils and their major components is well documented. Essential oils such as oregano and cinnamon are known for their effect against bacteria, fungi, and even viruses. The mechanism of action is proposed to be related to membrane and external cell structures, including cell walls. This study aimed to evaluate the biological activity of seven essential oils and eight of their major components against Gram-negative and Gram-positive bacteria, filamentous fungi, and protozoans. The antimicrobial activity was evaluated by determination of the Minimal Inhibitory Concentration for Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, Shigella sonnei, Aspergillus niger, Aspergillus ochraceus, Alternaria alternata, and Fusarium oxysporium, the half-maximal inhibitory concentration (IC50) for Trypanosoma cruzi and Leishmania mexicana, and the median lethal dose (LD50) for Giardia lamblia. Results showed that oregano essential oil showed the best antibacterial activity (66–100 µg/mL), while cinnamon essential oil had the best fungicidal activity (66–116 µg/mL), and both showed excellent antiprotozoal activity (22–108 µg/mL). Regarding the major components, thymol and carvacrol were also good antimicrobials (23–200 µg/mL), and cinnamaldehyde was an antifungal compound (41–75 µg/mL). The major components were grouped according to their chemical structure as phenylpropanoids, terpenoids, and terpinenes. The statistical analysis of the grouped data demonstrated that protozoans were more susceptible to the essential oils, followed by fungi, Gram-positive bacteria, and Gram-negative bacteria. The analysis for the major components showed that the most resistant microbial group was fungi, which was followed by bacteria, and protozoans were also more susceptible. Principal Component Analysis for the essential oils demonstrated the relationship between the biological activity and the microbial group tested, with the first three components explaining 94.3% of the data variability. The chemical structure of the major components was also related to the biological activity presented against the microbial groups tested, where the three first principal components accounted for 91.9% of the variability. The external structures and the characteristics of the cell membranes in the different microbial groups are determinant for their susceptibility to essential oils and their major components

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3