Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions

Author:

Makarov Igor S.1ORCID,Shambilova Gulbarshin K.23,Vinogradov Markel I.1ORCID,Anokhina Tatyana S.1,Bukanova Aigul S.2,Kairliyeva Fazilat B.2,Bukanova Saule K.2,Levin Ivan S.1ORCID

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia

2. Institute of Petrochemical Engineering and Ecology named after N.K. Nadirov, Atyrau Oil and Gas University named after S. Utebayev, Baimukhanov Street, 45A, Atyrau 060027, Kazakhstan

3. Department of Chemistry and Chemical Technology, Kh. Dosmukhamedov Atyrau University, Studenchesky Ave., 1, Atyrau 060011, Kazakhstan

Abstract

Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly concentrated mixed solutions based on cellulose and PAN are considered (the total content of polymers is 18 wt.%). For mixed solutions, the morphology and rheological behavior were evaluated. It is shown that the resulting solutions are two-phase, and their morphology depends on the components’ ratio and the system’s history. The non-monotonous change in the viscosity with the PAN content indicates a specific interaction of cellulose and PAN in N-methylmorpholine-N-oxide solutions. The rheological behavior of mixed solutions allows for their processing in conditions identical to those of cellulose solutions. The introduction of PAN into the cellulose matrix promotes a decrease in the structural order in the system, affecting the membranes’ transport properties. For composite membranes, it was found that with an increase in the content of the PAN phase, the retention of Remazol and Orange decreases, while the observed values are several times higher than those for cellulose membranes. The permeability of ethanol increases with increasing terpolymer content.

Funder

State Program of TIPS RAS

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3