Abstract
Proteasomes are multi-catalytic complexes with important roles in protein control. Their activity in stored red blood cells (RBCs) is affected by both storage time and the donor’s characteristics. However, apart from their abundancy in the membrane proteome, not much is known about their topology, activity, and networking during the storage of RBCs from beta-thalassemia trait donors (βThal+). For this purpose, RBC units from fourteen βThal+ donors were fractionated and studied for proteasome activity distribution and interactome through fluorometric and correlation analyses against units of sex- and aged-matched controls. In all the samples examined, we observed a time-dependent translocation and/or activation of the proteasome in the membrane and a tight connection of activity with the oxidative burden of cells. Proteasomes were more active in the βThal+ membranes and supernatants, while the early storage networking of 20S core particles and activities showed a higher degree of connectivity with chaperones, calpains, and peroxiredoxins, which were nonetheless present in all interactomes. Moreover, the βThal+ interactomes were specially enriched in kinases, metabolic enzymes, and proteins differentially expressed in βThal+ membrane, including arginase-1, piezo-1, and phospholipid scramblase. Overall, it seems that βThal+ erythrocytes maintain a considerable “proteo-vigilance” during storage, which is closely connected to their distinct antioxidant dynamics and membrane protein profile.
Funder
Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Innovation
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献