Numerical Simulation of Mass Transfer in Hollow Fiber Membrane Module for Membrane-Based Artificial Organs

Author:

Wang Ziheng12,Xu Shaofeng2ORCID,Yu Yifan3,Zhang Wei2,Zhang Xuechang2

Affiliation:

1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China

2. School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315000, China

3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310000, China

Abstract

The mass transfer behavior in a hollow fiber membrane module of membrane-based artificial organs (such as artificial liver or artificial kidney) were studied by numerical simulation. A new computational fluid dynamics (CFD) method coupled with K-K equation and the tortuous capillary pore diffusion model (TCPDM) was proposed for the simulations. The urea clearance rate predicted by the use of the numerical model agrees well with the experimental data, which verifies the validity of our numerical model. The distributions of concentration, pressure, and velocity in the hollow fiber membrane module were obtained to analyze the mass transfer behaviors of bilirubin and bovine serum albumin (BSA), and the effects of tube-side flow rate, shell-side flow rate, and fiber tube length on the bilirubin or BSA clearance rate were studied. The results show that the solute transport mainly occurred in the near inlet regions in the hollow fiber membrane module. Increasing the tube-side flow rate and the fiber tube length can effectively enhance the solute clearance rate, while the shell-side flow rate has less influence on the BSA clearance. The clearance of macromolecule BSA is dominated by convective solute transport, while the clearance of small molecule bilirubin is significantly affected by both convective and diffusive solute transport.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Science and Technology Innovation 2025 Major Project of Ningbo of China

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3