Affiliation:
1. BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
Abstract
The applicability of ionic liquids (ILs) as the draw solute in a forward osmosis (FO) system was investigated through a study on the effect of the structural change of the anion on the FO performance. This study evaluated ILs composed of tetrabutylphosphonium cation ([P4444]+) and benzenesulfonate anion ([BS]−), para-position alkyl-substituted benzenesulfonate anions (p-methylbenzenesulfonate ([MBS]−) and p-ethylbenzenesulfonate ([EBS−]), and methanesulfonate anion ([MS]−). The analysis of the thermo-responsive properties suggested that the [P4444][MBS] and [P4444][EBS] ILs have lower critical solution temperatures (LCSTs), which play a beneficial role in terms of the reusability of the draw solute from the diluted draw solutions after the water permeation process. At 20 wt% of an aqueous solution, the LCSTs of [P4444][MBS] and [P4444][EBS] were approximately 36 °C and 25 °C, respectively. The water flux and reverse solute flux of the [P4444][MBS] aqueous solution with higher osmolality than [P4444][EBS] were 7.36 LMH and 5.89 gMH in the active-layer facing the draw solution (AL-DS) mode at osmotic pressure of 25 atm (20 wt% solution), respectively. These results indicate that the [P4444]+-based ionic structured materials with LCST are practically advantageous for application as draw solutes.
Funder
Dong-A University Research Fund
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献