Interaction of Human Serum Albumin with Uremic Toxins: The Need of New Strategies Aiming at Uremic Toxins Removal

Author:

Zare FahimehORCID,Janeca AdrianaORCID,Jokar Seyyed M.,Faria MónicaORCID,Gonçalves Maria ClaraORCID

Abstract

Chronic kidney disease (CKD) is acknowledged worldwide to be a grave threat to public health, with the number of US end-stage kidney disease (ESKD) patients increasing steeply from 10,000 in 1973 to 703,243 in 2015. Protein-bound uremic toxins (PBUTs) are excreted by renal tubular secretion in healthy humans, but hardly removed by traditional haemodialysis (HD) in ESKD patients. The accumulation of these toxins is a major contributor to these sufferers’ morbidity and mortality. As a result, some improvements to dialytic removal have been proposed, each with their own upsides and drawbacks. Longer dialysis sessions and hemodiafiltration, though, have not performed especially well, while larger dialyzers, coupled with a higher dialysate flow, proved to have some efficiency in indoxyl sulfate (IS) clearance, but with reduced impact on patients’ quality of life. More efficient in removing PBUTs was fractionated plasma separation and adsorption, but the risk of occlusive thrombosis was worryingly high. A promising technique for the removal of PBUTs is binding competition, which holds great hopes for future HD. This short review starts by presenting the PBUTs chemistry with emphasis on the chemical interactions with the transport protein, human serum albumin (HSA). Recent membrane-based strategies targeting PBUTs removal are also presented, and their efficiency is discussed.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference105 articles.

1. https://www.sciencedirect.com/science/article/pii/B978141605185500002X

2. WHO Ageing-and-Healthhttps://www.who.int/news-room/fact-sheets/detail/ageing-and-health

3. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome

4. Acute Kidney Injury Increases Risk of ESRD among Elderly

5. Clinical Evaluation of Kidney Function;Hsu,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3