Computational Design of an Electro-Membrane Microfluidic-Diode System

Author:

Bondarenko Mykola1,Yaroshchuk Andriy23ORCID

Affiliation:

1. F.D. Ovcharenko Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine, Vernadskiy ave.42, 03142 Kyiv, Ukraine

2. ICREA, pg. L.Companys 23, 08010 Barcelona, Spain

3. Department of Chemical Engineering, Polytechnic University of Catalonia–Barcelona Tech, av. Diagonal 647, 08028 Barcelona, Spain

Abstract

This study uses computational design to explore the performance of a novel electro-membrane microfluidic diode consisting of physically conjugated nanoporous and micro-perforated ion-exchange layers. Previously, such structures have been demonstrated to exhibit asymmetric electroosmosis, but the model was unrealistic in several important respects. This numerical study investigates two quantitative measures of performance (linear velocity of net flow and efficiency) as functions of such principal system parameters as perforation size and spacing, the thickness of the nanoporous layer and the zeta potential of the pore surface. All of these dependencies exhibit pronounced maxima, which is of interest for future practical applications. The calculated linear velocities of net flows are in the range of several tens of liters per square meter per hour at realistically applied voltages. The system performance somewhat declines when the perforation size is increased from 2 µm to 128 µm (with a parallel increase of the inter-perforation spacing) but remains quite decent even for the largest perforation size. Such perforations should be relatively easy to generate using inexpensive equipment.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3