Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022

Author:

Papanikolaou Christina-Anna12ORCID,Papayannis Alexandros23ORCID,Gidarakou Marilena2ORCID,Abdullaev Sabur F.4,Ajtai Nicolae5ORCID,Baars Holger6ORCID,Balis Dimitris7ORCID,Bortoli Daniele8ORCID,Bravo-Aranda Juan Antonio9,Collaud-Coen Martine10ORCID,de Rosa Benedetto1,Dionisi Davide11ORCID,Eleftheratos Kostas1213ORCID,Engelmann Ronny6ORCID,Floutsi Athena A.6,Abril-Gago Jesús9ORCID,Goloub Philippe14,Giuliano Giovanni11ORCID,Gumà-Claramunt Pilar1ORCID,Hofer Julian6,Hu Qiaoyun14ORCID,Komppula Mika15,Marinou Eleni16ORCID,Martucci Giovanni10ORCID,Mattis Ina17ORCID,Michailidis Konstantinos7,Muñoz-Porcar Constantino18ORCID,Mylonaki Maria19ORCID,Mytilinaios Michail1,Nicolae Doina20,Rodríguez-Gómez Alejandro18ORCID,Salgueiro Vanda8ORCID,Shang Xiaoxia15ORCID,Stachlewska Iwona S.21ORCID,Ștefănie Horațiu Ioan5ORCID,Szczepanik Dominika M.21ORCID,Trickl Thomas22,Vogelmann Hannes22,Voudouri Kalliopi Artemis716

Affiliation:

1. Consiglio Nazionale delle Ricerche-Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA), C. da S. Loja, 85050 Tito Scalo, Italy

2. Laser Remote Sensing Unit, Physics Department, National Technical University of Athens, 15780 Zografou, Greece

3. Laboratory of Atmospheric Processes and Their Impact, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

4. Physical Technical Institute, National Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan

5. Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 400347 Cluj-Napoca, Romania

6. Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany

7. Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

8. Earth Remote Sensing Laboratory (EaRSLab), Institute of Earth Sciences (ICT), 7000-671 Évora, Portugal

9. Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, 18003 Granada, Spain

10. Federal Office of Meteorology and Climatology, MeteoSwiss, 1530 Payerne, Switzerland

11. Consiglio Nazionale delle Ricerche-Istituto di Scienze Marine (CNR-ISMAR), 30122 Rome, Italy

12. Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15772 Athens, Greece

13. Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece

14. Laboratoire d’Optique Atmosphérique–LOA, University of Lille, CNRS, UMR 8518, 59000 Lille, France

15. Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, 99600 Kuopio, Finland

16. National Observatory of Athens, 15236 Athens, Greece

17. Deutscher Wetterdienst, Meteorological Observatory Hohenpeißenberg, 82383 Hohenpeißenberg, Germany

18. CommSensLab, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain

19. Meteorologisches Institut, Ludwig-Maximilians-Universität München, 80539 München, Germany

20. National Institute of Research and Development for Optoelectronics, INOE 2000, 077125 Măgurele, Romania

21. Faculty of Physics, University of Warsaw (UW), 02-093 Warsaw, Poland

22. Karlsruher Institut für Technologie, Institut für Meteorologie und Klimaforschung (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany

Abstract

Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one in March and one in April, characterized by different dust transport paths. The dust aerosol layers were studied over 18 EARLINET stations, examining aerosol characteristics during March and April in four different regions (M-I, M-II, M-III, and M-IV and A-I, A-II, A-III, and A-IV, respectively), focusing on parameters such as aerosol layer thickness, center of mass (CoM), lidar ratio (LR), particle linear depolarization ratio (PLDR), and Ångström exponents (ÅE). In March, regions exhibited varying dust geometrical and optical properties, with mean CoM values ranging from approximately 3.5 to 4.8 km, and mean LR values typically between 36 and 54 sr. PLDR values indicated the presence of both pure and mixed dust aerosols, with values ranging from 0.20 to 0.32 at 355 nm and 0.24 to 0.31 at 532 nm. ÅE values suggested a range of particle sizes, with some regions showing a predominance of coarse particles. Aerosol Optical Depth (AOD) simulations from the NAAPS model indicated significant dust activity across Europe, with AOD values reaching up to 1.60. In April, dust aerosol layers were observed between 3.2 to 5.2 km. Mean LR values typically ranged from 35 to 51 sr at both 355 nm and 532 nm, while PLDR values confirmed the presence of dust aerosols, with mean values between 0.22 and 0.31 at 355 nm and 0.25 to 0.31 at 532 nm. The ÅE values suggested a mixture of particle sizes. The AOD values in April were generally lower, not exceeding 0.8, indicating a less intense dust presence compared to March. The findings highlight spatial and temporal variations in aerosol characteristics across the regions, during the distinctive periods. From 15 to 16 March 2022, Saharan dust significantly reduced UV-B radiation by approximately 14% over the ATZ station (Athens, GR). Backward air mass trajectories showed that the dust originated from the Western and Central Sahara when, during this specific case, the air mass trajectories passed over GRA (Granada, ES) and PAY (Payerne, CH) before reaching ATZ, maintaining high relative humidity and almost stable aerosol properties throughout its transport. Lidar data revealed elevated aerosol backscatter (baer) and PLDR values, combined with low LR and ÅE values, indicative of pure dust aerosols.

Publisher

MDPI AG

Reference70 articles.

1. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust;Kok;Atmos. Chem. Phys.,2021

2. Core Writing Team, Lee, H., and Romero, J. (2023). Summary for Policymakers. Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

3. Aerosol–cloud–precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols;Andreae;Earth-Sci. Rev.,2008

4. Mineral Dust Indirect Effects and Cloud Radiative Feedbacks of a Simulated Idealized Nocturnal Squall Line;Seigel;Atmos. Chem. Phys.,2013

5. Suppression of Rain and Snow by Urban and Industrial Air Pollution;Rosenfeld;Science,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3