Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations

Author:

Jiang Hang1ORCID,Zhang Rui1ORCID,Zhang Bo1,Chen Kangyi1,Liu Anmengyun1ORCID,Wang Ting1,Yu Bing2,Deng Lin3

Affiliation:

1. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China

2. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China

3. Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, Yubei District, Chongqing 401120, China

Abstract

To address the industry’s demand for sustainable oilfield development and safe production, it is crucial to enhance the scientific rigor and accuracy of monitoring ground stability and reservoir parameter inversion. For the above purposes, this paper proposes a technical solution that employs two-dimensional time-series ground deformation monitoring based on ascending and descending Interferometric Synthetic Aperture Radar (InSAR) technique first, and the composite dislocation model (CDM) is utilized to achieve high-precision reservoir parameter inversion. To validate the feasibility of this method, the Liaohe Oilfield is selected as a typical study area, and the Sentinel-1 ascending and descending Synthetic Aperture Radar (SAR) images obtained from January 2020 to December 2023 are utilized to acquire the ground deformation in various line of sight (LOS) directions based on Multitemporal Interferometric Synthetic Aperture Radar (MT-InSAR). Subsequently, by integrating the ascending and descending MT-InSAR observations, we solved for two-dimensional ground deformation, deriving a time series of vertical and east-west deformations. Furthermore, reservoir parameter inversion and modeling in the subsidence trough area were conducted using the CDM and nonlinear Bayesian inversion method. The experimental results indicate the presence of uneven subsidence troughs in the Shuguang and Huanxiling oilfields within the study area, with a continuous subsidence trend observed in recent years. Among them, the subsidence of the Shuguang oilfield is more significant and shows prominent characteristics of single-source center subsidence accompanied by centripetal horizontal displacement, the maximum vertical subsidence rate reaches 221 mm/yr, and the maximum eastward and westward deformation is more than 90 mm/yr. Supported by the two-dimensional deformation field, we conducted a comparative analysis between the Mogi, Ellipsoidal, and Okada models in terms of reservoir parameter inversion, model fitting efficacy, and residual distribution. The results confirmed that the CDM offers the best adaptability and highest accuracy in reservoir parameter inversion. The proposed technical methods and experimental results can provide valuable references for scientific planning and production safety assurance in related oilfields.

Funder

National Natural Science Foundation of China

Major Science and Technology Special Project of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3