Bubbles Management for Enhanced Catalytic Water Splitting Performance

Author:

Zhang Zheng1,Gu Chen1,Wang Kun1,Yu Haoxuan1,Qiu Jiaxuan1,Wang Shiyan1,Wang Longlu1ORCID,Yan Dafeng2

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing 210023, China

2. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

Abstract

Water splitting is widely acknowledged as an efficient method for hydrogen production. In recent years, significant research efforts have been directed towards developing cost-effective electrocatalysts. However, the management of bubbles formed on the electrode surface during electrolysis has been largely overlooked. These bubbles can impede the active sites, resulting in decreased catalytic performance and stability, especially at high current densities. Consequently, this impediment affects the energy conversion efficiency of water splitting. To address these challenges, this review offers a comprehensive overview of advanced strategies aimed at improving catalytic performance and mitigating the obstructive effects of bubbles in water splitting. These strategies primarily involve the utilization of experimental apparatus to observe bubble-growth behavior, encompassing nucleation, growth, and detachment stages. Moreover, the review examines factors influencing bubble formation, considering both mechanical behaviors and internal factors. Additionally, the design of efficient water-splitting catalysts is discussed, focusing on modifying electrode-surface characteristics. Finally, the review concludes by summarizing the potential of bubble management in large-scale industrial hydrogen production and identifying future directions for achieving efficient hydrogen production.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3