One-Dimensional Tubular Carbon Nitride Embedded in Ni2P for Enhanced Photocatalytic Activity of H2 Evolution

Author:

Jiang Chenyong1,Jiao Yiwei1,Li Fada2,Fang Cheng3,Ding Jing1,Wan Hui1,Zhang Ping2,Guan Guofeng1

Affiliation:

1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China

2. Jiangsu Province Engineering Research Center of Visible Light Catalytic Materials Lianyungang Technical College, Lianyungang 222000, China

3. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Graphitic carbon nitride is considered as an ideal semiconductor material for photocatalytic hydrogen evolution due to its suitable energy band structure, durability and environmental friendliness. To further improve the catalytic performance of g-C3N4, nickel phosphide-loaded one-dimensional tubular carbon nitride (Ni2P/TCN) was prepared by thermal polymerization and photo deposition. The beneficial effect of the one-dimensional tubular structure on hydrogen generation was mainly attributed to its larger specific surface area (increased light absorption) as well as the linear movement of the carriers, which reduced their diffusion distance to the surface and facilitated the separation of photogenerated carriers. The loading of Ni2P co-catalyst improved the visible light utilization efficiency and enabled the migration of photogenerated electrons towards Ni2P, which ultimately reacted with the enhanced adsorbed H+ on the Ni2P surface to facilitate the photocatalytic hydrogen evolution process. This study provides new clues for the further development of efficient, environmentally friendly and low-cost g-C3N4 catalysts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3