Affiliation:
1. School of Civil and Resource Engineering, University of Science and Technology, Beijing 100083, China
2. Shandong Goldsoft Technology Co., Ltd., Zhaoyuan 265400, China
3. Shandong Guohuan Solid Waste Innovation and Technology Center Co., Ltd., Zhaoyuan 265400, China
Abstract
The catalytic partial oxidation of methane (CPOM) to methanol has been regarded as a promising approach for methane utilization, despite that the conversion remains a formidable challenge in the perspective of catalysts. A novel catalyst system of multi-wall carbon nanotubes (MWCNTs) that supported Fe2O3 with existing I2, consisting of non-noble metal and working in weak acid at an ambient temperature, was investigated for CPOM. MWCNTs supported the Fe2O3 catalyst, which was prepared by the impregnation method and characterized via HRTEM, XRD, XPS, FT-IR, and BET techniques. The characterization results reveal that, as a non-noble metal catalyst, the Fe2O3/MWCNTs catalyst had a good catalytic performance and stability in the CPOM. With the variation of reaction pressure and the dosage of Fe2O3/MWCNTs, the catalyst system obtained the highest methane conversion rate of 7.41% and methanol selectivity of 86.3%, which is analogous to that of the equivalently strong acid catalyst system. The I2-Fe2O3/MWCNTs catalyst system has great potential in the application of CPOM under mild, environmentally benign conditions, such as non-noble metal requirement, ambient temperature, and weak acid. The reaction mechanism was discussed.
Funder
Fundamental Research Funds for the Central Universities
Shandong Province Science and Technology-Based Small and Medium-sized Enterprise Innovation Capability Enhancement Project
National Key R&D Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献