A Green Nanocatalyst for Fatty Acid Methyl Ester Conversion from Waste Cooking Oil

Author:

Khosa Sadaf1,Rani Madeeha1,Saeed Muhammad2,Ali Syed Danish3,Alhodaib Aiyeshah4ORCID,Waseem Amir1ORCID

Affiliation:

1. Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. School of Chemistry, University of the Punjab, Lahore 54590, Pakistan

3. Nanoscience and Technology Department, National Centre for Physics, Islamabad 44000, Pakistan

4. Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia

Abstract

This study used a novel combination of cellulose nanocrystals (CNCs) and calcium oxide (CaO) nanocomposite (CaO/CNCs) for the production of biodiesel from waste cooking oil. The filter paper was used as a raw cellulose source to produce the CNCs from the acid hydrolysis of cellulose with sulfuric acid. The as-synthesized CaO/CNC nanocomposite is recyclable and environmentally friendly and was characterized using Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron microscopy, and X-ray diffraction. The optimum process parameters investigated are a 20:1 methanol-to-oil molar ratio, 3-weight percent catalyst concentration, 60 °C temperature, and 90 min of reaction time. Under the optimum conditions, a biodiesel yield of 84% was obtained. The CaO/CNC nanocomposite achieved five times reusability, indicating its effectiveness and reusability in the transesterification reaction. The synthesized biodiesel chemical composition was examined using FTIR, GCMS, 1H-NMR, and 13C-NMR, and its properties, including specific gravity, color, flash point, cloud point, pour point, viscosity, sulfur content, sediments, water content, total acid number, cetane number, and corrosion test, were ascertained using ASTM standard practices. The outcomes were determined to fulfill global biodiesel standards (ASTM 951, 6751). Five successive transesterification processes were used to test the regeneration of the catalyst; the first three showed no distinct change, while the fifth cycle showed a reduction of up to 79%. The innovative composite CaO/CNC and used cooking oil are stable, affordable, and extremely successful for long-term biodiesel generation.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3