Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH

Author:

Xue Sensen1,Liang Xingyou1,Zhang Qing1,Ren Xuefeng2,Gao Liguo1ORCID,Ma Tingli34,Liu Anmin1ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116081, China

2. School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China

3. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

4. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Fukuoka, Japan

Abstract

Converting superfluous CO2 into value-added chemicals is regarded as a practical approach for alleviating the global warming problem. Powered by renewable electricity, CO2 reduction reactions (CO2RR) have attracted intense interest owing to their favorable efficiency. Metal catalysts exhibit high catalytic efficiency for CO2 reduction. However, the reaction mechanisms have yet to be investigated. In this study, CO2RR to CH3OH catalyzed by CuAg bimetal is theoretically investigated. The configurations and stability of the catalysts and the reaction pathway are studied. The results unveil the mechanisms of the catalysis process and prove the feasibility of CuAg clusters as efficient CO2RR catalysts, serving as guidance for further experimental exploration. This study provides guidance and a reference for future work in the design of mixed-metal catalysts with high CO2RR performance.

Funder

Fundamental Research Funds for the Central Universities

Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE

Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering

Hefei Advanced Computing Center

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3